
Gesture-Controlled Aerial Robot Formation for Human-Swarm Interaction
in Safety Monitoring Applications
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Abstract— This paper presents a formation control approach
for contactless gesture-based Human-Swarm Interaction (HSI)
between a team of multi-rotor Unmanned Aerial Vehicles
(UAVs) and a human worker. The approach is intended for
monitoring the safety of human workers, especially those
working at heights. In the proposed dynamic formation scheme,
one UAV acts as the leader of the formation and is equipped
with sensors for human worker detection and gesture recogni-
tion. The follower UAVs maintain a predetermined formation
relative to the worker’s position, thereby providing additional
perspectives of the monitored scene. Hand gestures allow the
human worker to specify movements and action commands
for the UAV team and initiate other mission-related commands
without the need for an additional communication channel or
specific markers. Together with a novel unified human detection
and tracking algorithm, human pose estimation approach and
gesture detection pipeline, the proposed approach forms a first
instance of an HSI system incorporating all these modules
onboard real-world UAVs. Simulations and field experiments
with three UAVs and a human worker in a mock-up scenario
showcase the effectiveness and responsiveness of the proposed
approach.

Index Terms— Aerial Systems: Applications, Human-Swarm
Interaction, Multi-Robot Systems.

SUPPLEMENTARY MATERIAL

Video: https://mrs.felk.cvut.cz/gestures2024

I. INTRODUCTION

The multi-rotor Unmanned Aerial Vehicles (UAVs) ap-
plied in challenging-to-access real-world work environments
such as wind turbines [1], large construction sites [2], and
power transmission lines [3], prove to be exceptionally ben-
eficial. The introduction of UAVs as robotic co-workers [4]
in these settings offers numerous benefits, including the
ability to access locations that are challenging for humans
to reach, assist in tool handling, monitor workers’ safety,
and reduce the physical and cognitive workload imposed
on the human workers [5], [6]. Within the context of the
European AERIAL-CORE project1, the application for safety
monitoring is driven by the observation that violations of
safety protocols are a primary cause of fatal injuries during
maintenance tasks on electric power infrastructures. To tackle
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(a)

(b) (c)
Fig. 1: The gesture-based interaction between a human worker and
a team of UAVs using the proposed system (a, c) with an example
output of the developed gesture recognition pipeline overlaid on the
corresponding input video frame (b).

this issue, the concept of Aerial Co-Workers (ACWs) has
been developed [7], encompassing three roles: the inspection-
ACW [3], the safety-ACW [8], and the physical-ACW [9].
These roles constitute key components of future human-robot
missions aimed at maintaining electric power transmission
infrastructures and, more broadly, the entire energy system.

Safety monitoring applications require the human opera-
tor, tasked with situation assessment, to be provided with
a comprehensive view of the scene. The operator greatly
benefits from the capability to adapt this view interactively,
with their situation awareness significantly enhancing as the
number of simultaneous scene perspectives increases. This
fact underpins the utility of deploying multiple UAVs for
this purpose. However, when monitoring human workers, it is
vital to balance the operator’s preferences with the monitored
individuals’ safety and comfort, ensuring their performance
is not adversely affected by the UAVs’ proximity.

This study introduces an approach for UAV formation
control in contactless Human-Swarm Interaction (HSI), fo-
cusing on multi-rotor UAV teams. Leveraging gesture-based
controls, our approach aims to improve situational aware-
ness and facilitate precise command execution in real-world
scenarios, such as maintenance operations on electric power
transmission infrastructures. The framework allows a remote
operator to dynamically adjust the UAV formation to op-
timize observation angles, while a monitored worker can
use gestures to request assistance or modify the UAVs’
proximity for safety reasons. This dual-control mechanism
ensures online system adaptation to operator needs and task
context, empowering the monitored individual to influence
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TABLE I: Comparison of addressed features in related papers and
our proposed approach: included (✓) and not included (✗).

Ref. Features
Human

Gestures
Formation

Control
Onboard

Computation
Adaptive

Parameters
Human

Tracking
[8] ✗ ✓ ✓ ✗ ✗

[14] ✓ ✓ ✗ ✓ ✗

[15] ✓ ✗ ✗ ✗ ✗

[16] ✓ ✓ ✗ ✓ ✗

[18] ✓ ✓ ✗ ✗ ✗

[20] ✗ ✓ ✓ ✗ ✗

[21] ✗ ✓ ✓ ✗ ✗

Ours ✓ ✓ ✓ ✓ ✓

UAVs behavior without additional equipment (e.g., wearable
sensors). This capability is crucial for ensuring the worker’s
safety during unforeseen events, as it leverages their superior
awareness of UAV proximity, nearby obstacles, and prevail-
ing weather conditions compared to the remote operator.

The presented work bridges the gap in multi-UAV in-
teractions with humans, introducing an innovative system
that integrates advanced HSI features, combining vision and
control strategies directly on UAV platforms for seamless and
responsive collaboration. Validated through rigorous testing
in both simulated and real-world outdoor conditions, as
depicted in Figures 1 and 4, our system shows significant
advancements in practical deployment, robustness with re-
spect to changes in the environment, and potential to augment
safety and efficiency in critical infrastructure maintenance
and inspection tasks.

A. Related Work

While extensive research has been dedicated to collabora-
tive and safe interactions involving human and ground robots,
the methods for UAVs in this context are less developed [10].
Particularly, the dynamics of human interaction with multi-
robot UAV teams present a significant research gap. Al-
though there has been considerable advancement in computer
vision and autonomous systems to facilitate human-UAV
interaction, these efforts primarily concentrate on specific
applications [11], [12]. Studies in computer vision have
focused on recognizing human features, such as faces [13],
hand gestures [14]–[16], hand motion [17], and body pos-
tures [18], with some examining gaze detection for robot
selection [19]. Concurrently, research on UAV autonomy has
tackled perception-aware control [20], formation control to
enhance visibility [8], and optimization-based obstacle avoid-
ance [21], aiming to improve UAVs’ independent navigation
and safety around humans and other UAVs. These contribu-
tions are vital in shaping UAVs’ interaction capabilities. Yet,
the integration of these technologies into cohesive systems
for human-UAV teams in complex, real-world environments
remains an area ripe for further exploration [22].

The presented studies tend to primarily focus either on the
vision component, sometimes neglecting or oversimplifying
vehicle dynamics [13]–[16], or on the control aspect, often
abstracting the use of generic onboard sensors [8], [20], [21].
Failing to consider both vision and control aspects in the

design of an HSI framework can result in severe failures.
For instance, shortcomings in estimating human position
(attributed to, e.g., unbalanced camera vibration or motion
blur) can compromise system stability, leading to crashes and
potentially endangering the operator. Furthermore, none of
the aforementioned studies [8], [13]–[21] have addressed the
challenge of integrating onboard gesture recognition modules
within the UAV formation control scheme. Additionally,
the majority of these methods [13]–[18], [20] are evaluated
indoors without accounting for external elements, such as
lighting conditions and wind gusts, and often rely on off-
board computation that could introduce notable delays in
real-world scenarios.

This work builds upon our previous studies [23]–[26]
and advances beyond existing methodologies by designing
algorithms that jointly address the human detection, pose
estimation, gesture recognition, and UAV formation control
that can be executed onboard light-weight UAVs as a unified
system. Thus, it eliminates off-board processing latency
and enables real-world deployment independent on external
infrastructure. The HSI framework also incorporates safety
features like obstacle avoidance, collision prevention with
other UAVs, and compliance with distance regulations to
ensure human comfort. For a comprehensive comparison
of the features addressed in the related papers and in the
proposed approach, we refer the reader to Table I.

B. Contributions

To the best of our knowledge, this work represents the
first instance of a contactless HSI system involving a human
and a team of multi-rotor UAVs that incorporates onboard
human state estimation and gesture recognition, enabling
dynamic and intuitive interaction between humans and UAVs
in real-world applications. The presented work addresses
the challenges hindering the application of existing UAV-
based HSI studies [13]–[18], [20] in real-world applications
through the following contributions. First, we propose a
novel dynamic formation control strategy supporting online,
on-demand adaptation of the shape of the UAV formation
in complex environments. This enables rapid response to
changes in the environment and provides a convenient way to
control the relative positions of multiple robots to the human
worker through operator’s commands. Second, we design an
onboard approach for recognizing 2D human body poses and
hand gestures using a Deep Neural Network configuration
that minimizes latency and eliminates the need for off-board
computation, thereby enhancing the system’s responsiveness.
Further, we introduce a multi-modal approach to human
pose estimation tailored for dynamic UAV systems, which
operates independently of external infrastructure and can
optionally function without additional equipment carried by
the human. Such an approach ensures the system’s applica-
bility across diverse scenarios and environments. Lastly, we
demonstrate that a system with advanced HSI capabilities
directly combining vision and control strategies for immedi-
ate responsiveness can be implemented onboard lightweight
UAV platforms.



II. GESTURE-CONTROLLED AERIAL FORMATION

The system architecture, as depicted in Fig. 2, comprises
four layers: Detection, Localization, Planning, and UAV
Plant. The Detection block interfaces directly with the hu-
man worker, translating hand gestures into commands for
the UAV formation. An RGB-D camera captures images,
enabling human detection, tracking, and gesture recognition
(Section II-A). The Localization block combines sensor data
from the UAV plant, including the vehicle’s relative distance
from the worker, with information from the Detection block
and an Ultra Wide Bandwidth (UWB) module. This fusion
provides inputs for a Kalman filter that estimates the human’s
3D position and velocity for the formation controller (Sec-
tion II-B). The Planning block generates feasible trajectories
for the individual vehicles based on the status of the UAV
formation leader, the requests from a remote human operator,
the output of the gesture classifier, the human worker’s state,
and the status of other UAV team members obtained through
a wireless network (Section II-C). Lastly, the UAV Plant
receives and executes the trajectories, ensuring precise flight
maneuvers [27].

A. Human detection and gesture recognition

RGB images from the onboard camera are processed
during flight to detect and track human worker, leveraging
the authors’ prior work on Convolutional Neural Networks
(CNNs) [23]. A fast deep neural object detector based
on Single-Shot multibox Detector (SSD) [28] is employed
along with a custom LDES-ODDA visual tracker [24]. The
two components are combined in a novel unified detection-
and-tracking configuration where detection and tracking are
performed alternately, exploiting the advantages of both
worlds towards achieving both increased accuracy and fast
inference.

The output of this pipeline is a predicted bounding box
for the tracked human in each input image where the human
is visible, as shown in Fig. 1(b). These bounding boxes are
then used for gesture recognition and human state estimation.
To maximize accuracy, both the detector and the tracker
were pretrained on a manually annotated dataset2 and then
fine-tuned using videos of a human operator wearing safety
equipment. These videos were captured in diverse outdoor
environments and lighting conditions.

Given a sequence of images captured by the RGB-D
camera of the leader UAV and the corresponding bound-
ing boxes of the tracked human, the developed gesture
recognition module predicts the type of the gesture from a
predefined set (e.g., extending one arm to the side) [29], [30].
The gesture recognition proceeds as a sequential pipeline.
First, each video frame is cropped using the corresponding
bounding box of the tracked human (see Fig. 1(b)). 2D
skeletons, i.e., visible human body joints in pixel coordinates,
are subsequently extracted from each cropped image via
an enhanced version of our multi-branch CNN from [25],
which has been crucially improved here by replacing the

2https://aiia.csd.auth.gr/open-multidrone-datasets

simple interbranch skip connections with more powerful
cross-attention synapses [31]. The last N outputs of the
skeleton extractor, covering N successive video frames, are
stored in a FIFO buffer. This buffer is subsequently processed
by our gesture classifier [26], a lightweight Long Short-
Term Memory (LSTM) neural architecture that determines
the type of the performed gesture based on a temporal sliding
window of size N. The pipeline was trained on a large,
manually annotated dataset of gestures3, and fine-tuned to
perform effectively on aerial images. The parameter N was
empirically tuned to N = 9, based on the camera’s update
rate and the pipeline’s performance when running onboard
the UAVs.

The gesture recognition pipeline’s output undergoes a
post-processing step to improve HSI reliability by mitigating
undesired shape adaptation from false positive detections. In
each iteration, the K most recent valid measurements are
considered, with older data filtered out beyond a time thresh-
old, tc ∈R>0, to maintain relevance. The dominant gesture’s
ratio, fd ∈ [0,1], is computed. If it exceeds a predefined
threshold Πd ∈ [0,1], the corresponding formation parameter
is adjusted (Section II-C). However, a new adjustment can
only occur after a time delay, td ∈ R>0, preventing repeated
updates based on the same set of measurements. This en-
hances the worker’s control and prevents unwanted shape
adaptation. The values of tc, Πd , and td were determined
through real-world experiments.

B. Human 3D position estimation

The estimated human’s 3D position, denoted as Hp =
[H px,

H py,
H pz]

⊤ ∈ R3, is derived from detections and avail-
able onboard sensors, and subsequently refined through a
Kalman filter. We employ a constant velocity model within
the Kalman filter, formulated as[Hp

Hv

]
[k+1]

=

[
I3 ∆tI3
03 I3

][Hp
Hv

]
[k]
+ εεε [k], (1)

z[k] = Hp[k]+ζζζ [k], (2)

εεε [k] ∼N (0,Q) , ζζζ [k] ∼N
(
0,ΣΣΣ[k]

)
, (3)

where the subscript •[k] indicates the time step, Hv =

[Hvx,
Hvy,

Hvz]
⊤ ∈ R3 represents the human’s velocity, I3 ∈

R3×3 and 03 ∈ R3×3 are the identity and zero matrices,
respectively, ∆t signifies the time step duration, and z is the
measurement. The variables εεε and ζζζ denote the process noise
and the measurement noise, respectively, both assumed to
follow a normal distribution with zero mean. The covariance
matrices for these distributions are represented by Q for the
process noise and ΣΣΣ for the measurement noise. We define
the matrix Q as

Q = diag
(

σ
2
px ,σ

2
py ,σ

2
pz ,σ

2
vx ,σ

2
vy ,σ

2
vz

)
, (4)

where σp• and σv• denote empirically derived parameters for
the human positional and velocity uncertainties, respectively.

3https://aiia.csd.auth.gr/auth-uav-gesture-dataset
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Fig. 2: A system architecture overview showing data exchange between blocks using arrows and highlighted layers.

To simplify our notation, we will henceforth not explicitly
mention the time •[k].

The measurement vector z is obtained using a unit vector
d⃗, which indicates the direction from the camera to the
human, and a distance estimate Cd. This direction vector d⃗
is determined by projecting the center of the bounding box
using a calibrated camera projection model. The distance Cd
is computed by aggregating estimates from three sources:

1) apparent distance dapparent calculated based on the ap-
parent size in the image and the known physical height
of the human, employing techniques from existing lit-
erature [32],

2) stereo camera distance dstereo derived from the median
of distance measurements within the bounding box
captured by the stereo camera,

3) UWB system distance dUWB obtained from an UWB
system4 mounted on the UAV and worn by the human.

Given the manufacturers’ specifications, we assumed
dUWB to be generally more accurate than dstereo, which,
in turn, is deemed more accurate than dapparent. However,
the availability of UWB and stereo measurements may be
inconsistent due to factors like limited range or absence
of the UWB beacon and stereo camera, radio interference,
and camera blur. To account for these limitations and utilize
the best available data, we select the most reliable distance
measurement for use, adjusting the covariance matrix ΣΣΣ

accordingly

z = CR
(

Cd⃗d
)
+Cp, (5)

{Cd, ΣΣΣ
}
=


{

dUWB,
CRΣΣΣUWB

CR⊤} , if dUWB available,{
dstereo,

CRΣΣΣstereo
CR⊤} , if dstereo available,{

dapparent,
CRΣΣΣapparent

CR⊤} , otherwise,
(6)

where CR ∈ R3×3,Cp = [C px,
C py,

C pz]
⊤ ∈ R3 represent the

4https://www.terabee.com/shop/mobile-robotics/
terabee-robot-positioning-system

camera’s rotation matrix and position, respectively, describ-
ing the camera’s pose in the world frame. The covariance
matrices for each distance measurement type are defined as
follows

ΣΣΣUWB = diag
(
σ

2
xy,σ

2
xy,σ

2
z,UWB

)
, (7)

ΣΣΣstereo = diag
(
σ

2
xy,σ

2
xy,σ

2
z,stereo

)
, (8)

ΣΣΣapparent = diag
(
σ

2
xy,σ

2
xy,σ

2
z,apparent

)
, (9)

where σxy indicates the uncertainty in determining the bound-
ing box’s center, and σz,UWB, σz,stereo, σz,apparent reflect the
uncertainties associated with the respective distance esti-
mation methods. These uncertainties are either empirically
determined or based on the known characteristics of the
sensors used. It is worth noting that we assume the camera’s
optical axis aligns with z-axis in the camera frame.

C. Formation control

The proposed formation control approach incorporates a
leader-follower formation scheme coupled with a receding
horizon control. In this scheme, one UAV takes on the
role of the formation leader, equipped with onboard sensors
and modules responsible for detecting the human worker
and recognizing their gestures. The obtained information is
then shared with other UAVs within the team, as depicted
in Fig. 2. In contrast, follower UAVs, equipped with supple-
mentary cameras, use the information provided by the leader
to maintain a predefined formation relative to the worker’s
position. Concurrently, they capture additional perspectives
to enhance safety monitoring. All UAVs within the formation
maintain their respective cameras oriented toward the worker.
A visual depiction of this scenario is provided in Fig. 3.

The state of the i-th UAV in the formation, denoted as ix=
[ip, iϕ, iξ ]⊤ ∈R5, consists of the UAV’s position coordinates
ip = [i px,

i py,
i pz]

⊤ ∈ R3 and the orientation of its camera,
represented by the heading iϕ and pitch iξ . The label i in the
upper left indicates a specific UAV within the team, where
i = L refers to the leader UAV, and i ∈ N>0 pertains to the

https://www.terabee.com/shop/mobile-robotics/terabee-robot-positioning-system
https://www.terabee.com/shop/mobile-robotics/terabee-robot-positioning-system


follower UAVs. Similarly, the state of the human worker is
denoted as Hx = [Hp,Hϕ,0]⊤. We introduce the concept of
adaptive parameters for specifying desired observation angles
(iβ and iγ) and distances (id), as depicted in Fig. 3, to
incorporate dynamic inputs from operators and monitored
workers. These parameters evolve based on gestures made
by the human worker and requests communicated by the
remote human operator. Such flexibility enables mid-flight
adaptation of the view on the scene during the continuous
tracking of human workers and their interactions with the
formation. Adaptation of formation parameters in response
to gestures is executed incrementally, enhancing the worker’s
situational awareness by observing the behavior of the UAVs.
The trajectory generation process is designed to accommo-
date such step changes, resulting in smooth and feasible
trajectories.

Given the desired observation angles in the horizontal (Lβ )
and vertical (Lγ) planes and the required distance to the
human (Ld), the desired state of the leader is given by

Lx = [Hp⊤,0]⊤−


Ld cos

(
Hϕ − Lβ

)
cos

(
Lγ
)

Ld sin
(

Hϕ − Lβ
)

cos
(

Lγ
)

Ld sin
(
−Lγ

)
Lβ −Hϕ

Lγ

 . (10)

Similarly, the desired state of the follower UAVs, with the
required observation distance id and observation angles iβ

and iγ defined with respect to the leader UAV’s observation
angles, is computed as

ix = [Hp⊤,0]⊤−


id cos

(
Lϕ − iβ

)
cos

(
iγ − Lξ

)
id sin

(
Lϕ − iβ

)
cos

(
iγ − Lξ

)
id sin

(
Lξ − iγ

)
iβ − Lϕ
iγ − Lξ

 . (11)

Note that Lβ = 0 represents an observation angle aligned
with the heading of the worker Hϕ , and that Hϕ does not
necessarily need to match the orientation of the worker’s
body, but can coincide with the estimated motion direction
or be set to a constant value.

The formation controller first applies (10) and (11) to
every pose on the prediction horizon using the worker’s
predicted trajectory and the leader’s planned trajectory. This
step generates reference trajectories for the UAVs, initially
excluding the collision avoidance constraints to alleviate
complexity. Subsequently, collision-free paths along the ref-
erence trajectories are established for each UAV using a
map of the environment. Following this, safe corridors are
computed along these paths using a convex decomposition
of free space [33]. As a final step, trajectory optimization is
executed within these safe corridors to obtain dynamically
feasible, collision-free trajectories. To prevent inter-UAV
collisions, the projected planned trajectories of the team
members, inflated by a safety distance Γdis, are incorpo-
rated as obstacles in the map of the environment for other
UAVs. This three-stage trajectory generation process operates
onboard each UAV, following a receding horizon strategy

Lp
1p

x

y
z

1β

Hp

x′

Ld

1d

Hϕ

Lβ

Lγ

Fig. 3: Illustration of the proposed formation scheme for tracking
the human worker, while providing a diverse view of the scene from
multiple angles (given by iβ and iγ) and distances (id).

that enables online response to dynamic changes in the
environment and requests for view adaptation. For detailed
information on UAV coordination method, refer to [8].

III. RESULTS

The effectiveness of the proposed HSI approach was
evaluated through Gazebo simulations and field experiments
in a mock-up scenario. The simulations were performed
using the MRS software stack [27], on a computer with
an i7-10510U processor and 16GB of RAM. Videos of
the experiments can be found at https://mrs.felk.
cvut.cz/gestures2024, with snapshots in Fig. 9.

A. Simulation

The validation simulation scenarios mirror real-world ap-
plications for the proposed methodology. In one scenario, a
formation of three UAVs is tasked with monitoring a human
worker performing maintenance operations at two power
transmission towers (see Fig. 4). Throughout the mission, the
formation receives 25 requests to adjust the views provided
by the UAVs, altering both the observation angles and the
distance of individual UAVs from the worker’s estimated
position. Most of these requests are initiated by an oper-
ator monitoring safety compliance, while the remainder are
triggered by the human worker’s commands, who requests an
increase in the UAVs’ relative distance to ensure comfort and
safety given the wind conditions and proximity to obstacles.

The mission showcases the system’s ability to navigate
close to obstacles, including maneuvering through narrow
gaps formed by electrical power lines while maintaining
tracking of the human subject. As illustrated in Fig. 5,
the UAVs successfully maintain the required distance from
the target and obstacles, adhering to the desired observa-
tion angles throughout the mission. The simulation also
demonstrates that, beyond providing multiple perspectives of
the monitored scene, the UAV formation effectively tracks
the human even without explicit implementation of direct
visibility constraints. Temporary loss of the worker from
the Field of View (FoV) or occlusions occurred only during
a circular flight around a transmission tower. Nevertheless,

https://mrs.felk.cvut.cz/gestures2024
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Fig. 4: Simulation illustrating a safety monitoring scenario with
three UAVs responding to numerous view adaptation requests.
Ellipses highlight the UAV formation at specific time instances,
while the trajectories are denoted by colored lines: the leader UAV
in red and the follower UAVs in blue and green.
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Fig. 5: Simulation timeline depicting the evolution of the key
metrics over time: the distance between UAVs and human worker
(dt ), the mutual distance between UAVs (dm), distance to the nearest
obstacle (do), and the observation angle (iβ ). These metrics are
individually represented for each UAV, with the leader’s data shown
in red and the followers’ in green and blue. In the bottom graph,
the opaque lines indicate the reference observation angles. Vertical
lines mark the instances when commands from the operator (in red)
and the human worker (in blue) were received.

these brief information gaps from the camera sensors were
mitigated by the proposed human pose estimation module,
highlighting the system’s robustness and adaptability.

B. Experiments

The integration of introduced modules into a single system
running onboard UAVs is demonstrated through field exper-
iments involving three UAVs collaborating with a human
worker wearing a reflective safety vest. The worker’s gestures
were mapped to changes in formation parameters for the
purpose of real-world responsiveness demonstration. The
mapping was as follows: crossing arms (gesture ID = 1)
decreased Lβ , extending an arm to the side (ID= 2) increased
Lβ , palms put together (ID = 3) decreased Lγ , and raising
an arm upwards (ID = 4) increased Lγ . The increments
and decrements of Lβ and Lγ were set to 30◦ and 5◦,
respectively. The heading of the human worker, Hϕ , was
assumed constant, and gestures were filtered using the twenty

TABLE II: Values of parameters applied in the experiments. Part of
the parameters is influenced by requirements of safety monitoring
procedures of the industrial partners in the AERIAL-CORE project.
Parameter Symbol Value Parameter Symbol Value
CNN sliding window N 9 [−] LUAV obs. heading Lβ 90◦

Data filtering thr. tc 20 s LUAV obs. pitch Lγ 11◦

Ratio threshold Πd 0.8 [−] LUAV des. distance Ld 10.00 m
Command threshold td 5 s 1UAV obs. heading 1β 60◦

Pos. process noise σp• 0.1m 1UAV obs. pitch 1γ 0◦

Vel. process noise σv• 0.1ms−1 1UAV des. distance 1d 8.00 m
Direction meas. noise σxy 0.05m 2UAV obs. heading 2β −60◦

UWB meas. noise σz,UWB 0.1m 2UAV obs. pitch 2γ 0◦

Stereo meas. noise σz,stereo 0.3m 2UAV des. distance 2d 8.00 m
Apparent size meas. noise σz,apparent 0.6m Mutual distance thr. Γdis 2.50 m

Intel Realsense D435

Garmin 1D LiDAR UWB beacon

Flight Control Unit

Comp. Intel NUC-i7

GPS module Comp. NVIDIA Jetson
AGX Xavier

Fig. 6: The aerial platform used as primary UAV for the experi-
ments.

most recent measurements. Additional parameters used for
the experiments are listed in Table II.

Two types of multi-rotor UAVs were used in the ex-
perimental validation. The primary UAV utilizes a Tarot
650 frame and is equipped with a Pixhawk Flight Control
Unit (FCU) with sensors for UAV state estimation, gesture
recognition, and human detection. Refer to Fig. 6 for detailed
visuals. Onboard computation is facilitated by an NVIDIA
Jetson AGX Xavier computer, which manages the human de-
tection and gesture recognition pipeline, while an Intel NUC-
i7 handles the core functions of state estimation, control, and
planning (see Fig. 2). The computers are interconnected via
an Ethernet interface, ensuring reliable data transfer. While
running the entire pipeline on a single AGX Xavier computer
is feasible, leveraging additional computational resources
allows for faster image processing and separation of the
computationally intensive image processing pipeline from the
safety-critical modules essential for autonomous UAV flight.
The secondary UAVs are constructed using F450 platforms,
with a payload limited to a single onboard computer Intel
NUC-i7, Pixhawk FCU, and the necessary sensors for state
estimation and scene capture. A detailed description of the
hardware platforms is provided in [34], [35].

The final evaluation of the system followed a series of
experiments involving varying numbers of UAVs and diverse
environments, which helped to fine-tune the performance of
individual modules and their interconnections. The presented
evaluation of the system is based on three autonomous flights
conducted under a consistent setup and configuration of the
modules. In these flights, the system achieved a success rate
of 87% in propagating human gestures to scene view adapta-
tion. In this metric, an invoked shape adaptation is considered
successful if executed while the human performs the corre-
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Fig. 7: A timeline illustrating the progression from human gestures
to the adaptation of the relative view provided by the UAVs. The
graphs depict the IDs of the gestures performed by the human
worker (Ggt ), gestures detected by the gesture recognition module
(Gd), the dominant gesture (G f ), and its corresponding relative
frequency ( fd). Additionally, the graphs include the observation
angles of the leading UAV (Lβ , Lγ). Each gesture is represented
by its associated ID, as detailed in Section III. The gesture ID = 0
corresponds to the detection of a human not performing any gesture.
The green line represents the threshold Πd on fd , while the vertical
red lines denote instances associated with confirmed requests for
scene view adaptation.
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Fig. 8: Mutual distances between the leader UAV and the human
(L-H), between the leader UAV and one of the followers (L-F), and
between the follower UAV and the human (F-H) depicted during
one of the real-world experiments. The red vertical lines indicate
times when a request for scene view adaptation was sent. The
follower’s deviation from the required distance is caused mainly
by the propagation of the imprecision in human pose estimation.

sponding gesture. A timeline illustrating the propagation of a
human’s gesture through the gesture recognition and filtering
pipeline, up to the adaptation of observation angles during
one of the experiments, is depicted in Fig. 7. The average
time from the initiation of a gesture to the onset of shape
adaptation during the final experiments was 7 s. This re-
sponse time is influenced by a conservative parameter setup,
which is necessary to prevent undesired view adaptation due
to incorrect gesture classification or a temporary worker’s
pose resembling one of the predefined gestures. Throughout
the experiments, the UAV team effectively maintained the
safety distance Γdis between both the human and among
the UAVs while keeping their cameras oriented toward the
worker. This ensured safety and showcased the capability of
the proposed approach in real-world scenarios, as depicted
in Fig. 8 and Fig. 9.

(a) (e)

(b) (f)

(c) (g)

(d) (h)

raise arm upwards

cross arms

put palms together

extend arm to side

Fig. 9: Sequence of snapshots showing a team of UAVs following
a human worker (a)-(d) and adapting the relative view based on
the detected gestures (e)-(h). The experiment presents a full 3D
deployment, which requires adapting the observation angles in both
the horizontal and vertical directions.

IV. DISCUSSION

The conducted experiments underscore the potential of
employing hand gestures for the intuitive control and coordi-
nation of multi-robot aerial systems. This feature proves es-
pecially advantageous in scenarios such as safety monitoring
and assisting human workers in challenging environments,
as it does not impose an extra workload on the workers nor
necessitate additional equipment for conventional wireless
communication.

However, gesture-based control presents specific chal-
lenges distinct from other modes of interaction. Firstly,
the admissible observation angles and distance range are
limited by the gesture recognition module’s performance
and the safety requirements of the workers. The recognition
range of the worker in the image is constrained, which
must be considered in the scene view adaptation process.
Similarly, adhering to safety regulations involves maintain-
ing a minimum distance from the worker. Our approach
addresses this challenge by imposing stringent limits on the
parameters Lγ , id and Γdis. In future work, we intend to
enhance the system’s robustness by implementing a worker
detection pipeline on multiple UAVs coupled with distributed
estimation of worker’s position. Such an approach not only
provides multiple perspectives but also prevents the loss of
the tracked worker due to occlusion or obstacle avoidance
maneuvers.

The second important aspect of employing gestures to



interact with teams of aerial robots is particularly relevant in
contexts where workers involved in maintenance tasks may
unintentionally assume positions that resemble predefined
gestures. This scenario is amplified by the safety challenges
inherent in such environments, characterized by constrained
mobility and the necessity to maintain uncomfortable pos-
tures. Given the potential for misinterpretation, it becomes
crucial to configure the gesture processing pipeline with care.
This cautious approach is necessary to avoid the propagation
of false positive detections to mission-related commands.

Lastly, our experimental campaigns have revealed that
providing clear feedback from the formation to the human
executing gestures is one of the most significant and not
immediately evident aspects of HSI via gestures. To avoid
the need for additional equipment for visual feedback, we
have structured the behavior of UAVs such that the human
can gauge the acceptance of their command based on the
observable actions of the UAVs. In this regard, making incre-
mental alterations in the formation parameters and avoiding
continuous scene view adaptation commands have proven
advantageous.

V. CONCLUSION

In this paper, we introduced a novel approach for con-
tactless Human-Swarm Interaction using hand gestures to
control a team of UAVs applicable in safety monitoring
scenarios. The proposed approach enables safe and effi-
cient interaction between remote human operators, human
workers and autonomous aerial systems, offering benefits in
real-world scenarios. Integrating hand gestures as a control
modality allows human workers to command and adjust
various formation parameters, such as relative distance to
the worker, request immediate assistance, and initiate other
mission-related commands. The proposed approach directly
incorporates robust algorithms for human worker detection
and gesture recognition, ensuring an accurate and prompt
response. Simulations and field experiments validated the
effectiveness of the approach, demonstrating successful nav-
igation in complex environments while providing varying
required perspectives controlled by both remote commands
and based on the detected hand gestures.
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